SITE OPTIMISÉ POUR EDGE, MOZILLA FIREFOX et CHROME
AFFICHAGE 1920 X 1080
SITE OPTIMISÉ POUR EDGE, MOZILLA FIREFOX et CHROME
AFFICHAGE 1920 X 1080
SITE OPTIMISÉ POUR EDGE, MOZILLA FIREFOX et CHROME
AFFICHAGE 1920 X 1080
LE MAGNETISME DE LA TERRE
In Mémoriam, professeur Pierre-André Bourque de l'Université Laval au Québec qui m'avait autorisé à utiliser ses travaux et chaleureusement encouragé à mes débuts.
Par le Professeur Pierre André Bourque,
Université Laval, Québec
La compréhension du magnétisme terrestre a constitué un pas très important dans la formulation de la théorie de la tectonique des plaques. Deux aspects du magnétisme retiennent l'attention: le paléomagnétisme (voir la page traitant de la dynamique interne de la Terre) et les inversions du magnétisme terrestre. La découverte de bandes d'anomalies magnétiques sur les planchers océaniques parallèles aux dorsales est venue cautionner la théorie de l'étalement des fonds océaniques de Hesse.
1 - Le Magnétisme
Bien que les Chinois aient découvert les premiers le magnétisme terrestre dès l'an 1040, il revient à William Gilbert, physicien et médecin de la reine Elisabeth I d'Angleterre au 16e siècle, d'avoir réalisé que si l'aiguille aimantée d'une boussole pointe invariablement vers le Nord, c'est qu'il y a quelque chose, une sorte d'aimant placé au centre de la terre, et qu'il devient possible de calculer la direction et l'intensité du champ magnétique en tout point de la surface du globe.
La terre agit comme un dipôle magnétique, ou encore comme un aimant. Les lignes de forces magnétiques établissent tout autour de la planète un champ magnétique terrestre. C'est la raison pour laquelle l'aiguille d'une boussole s'aligne automatiquement selon les lignes de force, dans une direction nord-sud.
Il aura fallu attendre près de deux siècles, soit vers la fin du 19e siècle, pour qu'on développe le magnétomètre, un appareil capable de mesurer l'intensité du champ magnétique, ouvrant la porte à l'exploration quantitative du champ magnétique terrestre. On se rend compte alors qu'il y a des anomalies, i.e. des différences entre les intensités mesurées en un lieu donné et les intensités théoriques calculées selon l'hypothèse de Gilbert: anomalie positive (champ réel > champ théorique) et anomalie négative (champ réel < champ théorique).
Le physicien napolitain Macedonio Melloni (1853) découvre que chaque roche volcanique possède sa propre aimantation. Il formule l'hypothèse que cette aimantation a été acquise lors du refroidissement de la lave qui enregistre le champ magnétique terrestre de l'époque. Les laves possèdent donc une "mémoire magnétique". Deux chercheurs français, Brunhes (1906) et Mercanton (1910 à 1930), confortent la découverte de Melloni en y apportant les fondements théoriques. Il a cependant fallu attendre l'après-guerre pour voir une utilisation intensive de cette "mémoire magnétique".
2- Les inversions du magnétisme terrestre
En 1906, Brunhes découvre que non seulement les laves ont une mémoire magnétique, mais aussi que certaines montrent des inversions du magnétisme; en d'autres termes, que le dipôle Nord-Sud aurait été à certaines époques Sud-Nord. A la même époque, le japonais Matuyama ajoute une notion temporelle à ces inversions. Il date diverses coulées de laves et conclut à l'existence d'inversions multiples à travers les temps géologiques. Les conclusions de Matuyama tombent dans l'indifférence et l'oubli pour une période de près de 50 ans, jusqu'à ce que les américains qui prenaient beaucoup leurs distances par rapport à l'application du paléomagnétisme aux dérives continentales se passionnent pour les inversions de polarité magnétique.
Le physicien américain J. Graham (1950) a été en quelque sorte l'étincelle dans le renouveau d'intérêt pour les inversions. Il avait émis l'idée que les inversions de polarité magnétique ne sont pas dues à une inversion du champ magnétique terrestre comme l'avait proposé Matuyama, mais à un phénomène bien connu en physique des solides, l'auto-inversion, qui interviendrait lors de la cristallisation de certains minéraux. Bien que fausse, cette proposition a eu le mérite d'avoir amorcé un débat qui remit à l'ordre du jour le paléomagnétisme.
En 1960, John Reynolds du département de physique de Berkeley (Californie) et John Verhoogen du département de géologie de la même université unissent leurs efforts pour étudier des basaltes: l'un met au point une méthode de datation isotopique permettant d'avoir des âges précis, l'autre s'applique à obtenir des mesures fiables d'orientation du paléomagnétisme sur les mêmes échantillons. Ils démontrent rapidement le bien-fondé des conclusions de Matuyama. Walter Elsasser de l'Université Princeton et Ted Bullard de Cambridge en Grande Bretagne développent l'idée d'une dynamo centrale située dans le noyau terrestre. Pour expliquer les retournements épisodiques du champ magnétique, ils conçoivent que cette dynamo pourrait présenter des comportements instables.
Finalement, la réalité des inversions du champ magnétique va être démontrée entre 1960 et 1966 par deux équipes issues de Berkeley: une équipe du USGS (United State Geological Survey) en Californie composée d'Alan Cox, Richard Doell et Brant Dalrymple, et une équipe de l'ANU (Australian National University) formée de Ian McDougall et François Chamalun. A partir de laves relativement récentes, ils construisent ensemble une échelle des inversions de la polarité magnétique pour les derniers 4 Ma, une échelle applicable aux U.S.A., à l'Europe, au Pacifique et à l'Australie, et qui a valeur mondiale.
Les schémas qui suivent expliquent comment on a utilisé les inversions du champ magnétique terrestre pour construire une échelle magnétostratigraphique.
Figure A Elle montre comment on peut établir une échelle magnétostratigraphique locale à partir d'un empilement de coulées de laves, chacune bien datée. Les laves enregistrent, au moment de leur cristallisation, le champ magnétique terrestre telle qu'il est à ce moment. Par exemple, supposons que la première coulée date de -4,1 Ma; elle a enregistré la polarité de l'époque, soit une polarité normale. La seconde coulée, datant de -3,4 Ma, une polarité inverse, et ainsi de suite. Avec le temps, il se construit un édifice stratifié, constitué de coulées de polarité, ou normale, ou inverse, et de plus en plus jeunes vers le sommet de la pile.
Figure B Supposons que l'on fasse un forage carotté dans cet édifice; on datera une suite d'échantillons prélevés sur la carotte et pour chacun, on mesurera la polarité du paléomagnétisme.
Figure C On reportera les données sur une échelle de temps géologique, en indiquant la polarité. Ainsi, dans notre exemple, un échantillon ayant donné un âge de -4,1 Ma a indiqué une polarité normale (point rouge); un échantillon d'âge -3,4 Ma, une polarité inverse (point bleu), et ainsi de suite. Plus on aura de points, plus notre échelle sera précise en ce qui concerne les âges géologiques où il y a eu inversion magnétique (par exemple ici, la précision est plus grande entre -0,8 et -0,9 Ma qu'entre -3,2 et -4,1 Ma) et la répartition temporelle des périodes normales par rapport aux périodes inverses.
Figure D C'est en regroupant les données de plusieurs successions au monde (plusieurs échelles locales, obtenant ainsi une multitude de points) qu'on est parvenu à construire l'échelle des derniers 4 Ma.
Durant cette période géologique, il y a eu plusieurs inversions (indiquées par les changements de couleurs), mais on fait des regroupements en époques et en événements. Il y a eu des époques où c'est la polarité normale (en rouge) qui a dominé (Bruhnes, Gauss) et des époques où c'est la polarité inverse (Matuyama, Gilbert).
A noter que les époques ont été dédiées aux grands pionniers de notre compréhension du magnétisme terrestre, alors que les événements portent des noms de lieux.
3 - Les anomalies magnétiques des planchers océaniques
Lors des premières phases de l'exploration des fonds océaniques, les relevés de l'intensité du champ magnétique à l'aide d'un magnétomètre tiré par un bateau avaient montré l'existence, sur ces fonds, d'une alternance de bandes parallèles de magnétisme faible et de magnétisme élevé. On s'expliquait mal cette situation.
Les schémas qui suivent expliquent comment on a utilisé les inversions du champ magnétique terrestre pour construire une échelle magnétostratigraphique.
Au début des années 1960, Vine, Matthews et Morlay ont apporté l'explication voulue et montré que l'existence de ces bandes d'anomalie magnétique venait supporter l'hypothèse de l'étalement des fonds océaniques de Hesse. La formation de lithosphère océanique à la dorsale enregistre la polarité du champ magnétique terrestre au moment où cristallise le basalte. Le plancher océanique qui s'étale se comporte comme la bande magnétique d'un magnétophone qui fixe le son (ici, la polarité du champ magnétique) au fur et à mesure de son déroulement. Ce sont ces différences de polarité magnétique qui sont responsables des anomalies de l'intensité du champ. La polarité actuelle étant normale, les bandes d'intensité élevée correspondent aux bandes de polarité normale, résultant d'un effet d'addition, alors que les bandes d'intensité faible correspondent aux bandes de polarité inverse, résultant d'un effet de soustraction. Les quatre schémas qui suivent montrent comment se construit dans le temps un plancher océanique constitué de bandes parallèles, de polarités magnétiques alternant entre normales et inverses, et symétriques de part et d'autre d'une dorsale.
Pour celles et ceux qui veulent approfondir le sujet il existe un site scientifique remarquable où vous trouverez une importante somme de données :
http://www.astrosurf.com/luxorion/terre-champ-magnetique.htm